[推荐]歌颂党的作文800字
在日常学习、工作或生活中,大家对作文都再熟悉不过了吧,作文是经过人的思想考虑和语言组织,通过文字来表达一个主题意义的记叙方法。你所见过的作文是什么样的呢?下面是小编帮大家整理的歌颂党的作文800字,欢迎大家借鉴与参考,希望对大家有所帮助。
歌颂党的作文800字1
一.培养浓厚的兴趣
高中的数学概念抽象、习题繁多、教学密度大,因此,高一过后,一些同学对数学望而生畏。
数学的学习其实不会很难,关键是你是否愿意去尝试。当你敢于猜想,说明你拥有数学的思维能力;而当你能验证猜想,则说明你已具备了学习数学的天赋!认真地学好高二数学,你能领悟到的还有:怎么用最少的材料做满足要求的物件;如何配置资源并投入生产才能获得最多利润;优美的曲线为什么可以和代数方程建立起关系;为什么出车祸比中奖容易得多;为什么一个年段的各个班级常常出现生日相同的同学……
当你陷入数学魅力的“圈套”后,你已经开始走上学好数学的第一步!
二.学会预习和听课
对课本上的内容,上课之前最好能够首先预习一下,否则上课时有一个知识点没有跟上老师的步骤,下面的就不知所以然了,如此恶性循环,就会开始厌烦数学,对学习来说兴趣是很重要的。课后针对性的练习题一定要认真做,不能偷懒,也可以在课后复习时把课堂例题反复演算几遍,毕竟上课的时候,是老师在进行题目的演算和讲解,学生在听,这是一个比较机械、比较被动的接受知识的过程。也许你认为自己在课堂上听懂了,但实际上你对于解题方法的理解还没有达到一个比较深入的程度,并且非常容易忽视一些真正的解题过程中必定遇到的难点。“好脑子不如赖笔头”。对于数理化题目的解法,光靠脑子里的大致想法是不够的,一定要经过周密的笔头计算才能够发现其中的难点并且掌握化解方法,最终得到正确的计算结果。
三.及时复习和小结:
实际上无论你是否完成了入门,或是已经进入到了一个更高的境界,你要做的另外一件事就是学好基础知识。这点最重要。数学的基础知识不光包括理解定义,熟记公式,会基本的公式运用,还包括解题步骤、相当的解题经验,当然还有计算准确性。
下面逐个说一下:
(1)理解定义:理解定义并不是背,有很多定义我也不记得,理解就行,没人让你默写某某东西的定义。
(2)熟记公式:这个不用说了吧。
(3)会基本的公式运用:不包括灵活运用。
(4)解题步骤:这也不能轻视,从最已开始学习时就要注意。步骤和逻辑性有直接关系,如果你逻辑性强,那你步骤写的一定不会太差,反过来是否成立我没试过。
(5)相当的解题经验:这个最重要,但不是死做题。有些题,你不会,但你做过,或者做过类似的,这样你就能照葫芦画瓢解出来,从成绩上看这跟你会是一样的。很诱人吧。
(6)计算准确性:马虎,也算非智力性错误的一种,这一直都是一个问题。实际上我也马虎,马虎了5年+4年+3年,始终也没有解决,高考时莫名其妙的没马虎。但是像我这样幸运的人实在是很少,大家不要抱侥幸心理。
这些我相信,大家无论天资如何,一定都能做到,如果你做不到,只等说明你学习不努力或心态不正或有其他教育以外的问题。
要善于总结归类,寻找不同的题型、不同的知识点之间的共性和联系,把学过的知识系统化。举个具体的例子:高一代数的函数部分,我们学习了指数函数、对数函数、幂函数、三角函数等好几种不同类型的函数。但是把它们对比着总结一下,你就会发现无论哪种函数,我们需要掌握的都是它的表达式、图象形状、奇偶性、增减性和对称性。那么你可以将这些函数的上述内容制作在一张大表格中,对比着进行理解和记忆。在解题时注意函数表达式与图形结合使用,必定会收到好得多的效果。
最后就是要加强课后练习,除了作业之外,找一本好的参考书,尽量多做一下书上的练习题(尤其是综合题和应用题)。熟能生巧,这样才能巩固课堂学习的效果,使你的解题速度越来越快。
四.学习解题
我们知道,学习数学需要通过复习来循序渐进地提高自己的数学能力。有的同学简单地把复习理解为做大量的.题目,也有的同学认为复习就是记忆、背诵课本中的有关概念、定理、公式等。可见,许多同学对复习的认识还存在误区:没有真正认识到数学学科的特点,在复习方法上没有和其他学科区别开来。
数学是应用性很强的学科,学习数学就是学习解题。搞题海战术的方式、方法固然是不对的,但离开解题来学习数学同样也是错误的。其中的关键在于对待题目的态度和处理解题的方式上。
——首先是精选题目,做到少而精。只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。
——其次是分析题目。解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的灵活应用能力。例如,许多三角方面的题目都是把角、函数名、结构形式统一后就可以解决问题了,而选择怎样的三角公式也是成败的关键。
——最后,题目总结。解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足的,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的题目,有以下几个方面需要总结:
①在知识方面,题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。
②在方法方面:如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。
③能不能把解题过程概括、归纳成几个步骤(比如用数学归纳法证明题目就有很明显的三个步骤)。
④能不能归纳出题目的类型,进而掌握这类题目的解题通法(我们反对老师把现成的题目类型给学生,让学生拿着题目套类型,但我们鼓励学生自己总结、归纳题目类型)。
五.强化运算能力
多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
歌颂党的作文800字2
高中数学一直是学生非常注重的科目,高考复习过程中,数学也成为考生较为重视的科目,学好高中数学就要掌握一定的学习方法。
1、构建知识脉络
要学会构建知识脉络,数学概念是构建知识网络的出发点,也是数学高考考查的重点。
因此,我们要掌握好代数中的数、式、不等式、方程、函数、三角比、统计和几何中的平行线、三角形、四边形、圆的概念、分类,定义、性质和判定,并会应用这些概念去解决一些问题,这是快速提升高考数学成绩的复习方法之一。
2、建立病例档案
准备一本数学学习“病例卡”,把平时犯的错误记下来,找出“病因”开出“处方”,这个也是快速提升高考数学成绩的复习方法,并且经常地拿出来看看、想想错在哪里,为什么会错,怎么改正,这样到高考时你的数学就没有什么“病例”了。
这是高考数学的得分技巧,我们要在教师的指导下做一定数量的数学习题,积累解题经验、总结解题思路、形成解题思想、催生解题灵感、掌握学习方法。
3、强化题组训练
除了做基础训练题、平面几何每日一题外,还可以做一些综合题,并且养成解题后反思的习惯。
这也是高考数学的.得分技巧,反思自己的思维过程,反思知识点和解题技巧,反思多种解法的优劣,反思各种方法的纵横联系。
而总结出它所用到的数学思想方法,并把思想方法相近的题目编成一组,不断提炼、不断深化,做到举一反三、触类旁通。
逐步学会观察、试验、分析、猜想、归纳、类比、联想等思想方法,主动地发现问题和提出问题。
歌颂党的作文800字3
高中数学学习是中学阶段承前启后的关键时期,高中数学与初中数学存在很大差异,初中数学在教材表达上通俗易懂,研究对象多是常量,侧重于模仿和定量计算,学生往往只要多模仿做题就能考高分,而高中数学语言表达抽象,解题方法多样,没有一定量的积累与理解很难考高分。同学们要意识到自己已经是高中生了,不能用学习初中数学的心态对待高中数学,要转变观念、提高认识和改进学法,在此,我们就学习高中数学谈点看法。
1、和数学老师交朋友
我们之所以把这条放在首位,因为它确实对数学学习具有举足轻重的作用。人的感情具有传递性的,与老师的距离近了,也就离数学更近了。如何与老师成为朋友,很简单,经常在课堂上提问或者经常跑去请教老师,你们自然就是朋友了。
2、提高课堂听课效率
(1)科学预习。预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习后将课本的例题及老师要讲授的习题提前完成,还可以培养自己的自学能力,与老师的方法进行比较,可以发现更多的方法与技巧。总之,这样会使你的听课更加有的放矢,你会知道哪些该重点听,哪些该重点记。
(2)科学听课。听课的过程不是一个被动参预的过程,要全身心地投入课堂学习,耳到、眼到、心到、口到、手到。还要想在老师前面,不断思考:面对这个问题我会怎么想?当老师讲解时,又要思考:老师为什么这样想?这里用了什么思想方法?这样做的目的是什么?这个题有没有更好的方法?问题多了,思路自然就开阔了。
(3)科学笔记。听数学课要不要记笔记?当然要。不仅要记,而且要记好。当然,什么都记就不是记笔记了,应该针对自身听课的情况选择性记录。
记问题——将课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。 记疑点——对老师在课堂上讲的内容有疑问应及时记下,这类疑点,有可能是自己理解错误造成的,也有可能是老师讲课疏忽造成的,记下来后,便于课后与老师商榷。
记方法——勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处。
记总结——注意记住老师的课后总结,这对于浓缩一堂课的内容,找出重点及各部分之间的联系,掌握基本概念、公式、定理,寻找存在问题、找到规律,融会贯通课堂内容都很有作用。
3、必须用好你的数学笔记。如果记下的笔记只停留在纸上那永远不会成为你的思维,要成为你自己的东西,必须用心去独立体会笔记里的.每一个典型例题,每一个经典方法,每一个想法思路,完全理解并且会熟练运用才是根本。
4、加强课内课外练习。做数学题一定要养成良好的审题习惯,提高阅读能力。 审题是解题的关键,数学题是由文字语言、符号语言和图形语言构成的,拿到目要“宁停三分”,“不抢一秒”,要在已有知识和解题经验基础上,译字逐句仔细审题,细心推敲,切忌题 意不清,仓促上阵,审数学题有时须对题意逐句“翻译”,将隐含条件转化为明显条件;有时需联系题设与结论,前后呼应挖掘构建题设与目标的桥梁,寻找突破 点,从而形成解题思路。
5、要养成良好的演算、验算习惯,提高运算能力。 学习数学离不开运算,初中老师往往一步一步在黑板上演算,因时间有限,运算量大,高中老师常把计算留给学生,这就要同学们多动脑,勤动手,不仅能笔算,而且也能口算和心算,对复杂运算,要有耐心,掌握算理,注重简便方法。
6、要养成良好的解题习惯,提高自己的思维能力。 数学是思维的体操,是一门逻辑性强、思维严谨的学科。而训练并规范解题习惯是提高用文字、符号和图形三种数学语言表达的有效途径,而数学语言又是发展思维能力的基础。因此,只有以本为本,夯实基础,才能逐步提高自己的思维能力。
7、要养成解后反思的习惯,提高分析问题的能力。 解完题目之后,要养成不失时机地回顾下述问题:解题过程中是如何分析联想探索出解题途径的?使问题获得解决的关键是什么?在解决问题的过程中遇到了哪些困 难?又是怎样克服的?这样,通过解题后的回顾与反思,就有利于发现解题的关键所在,并从中提炼出数学思想和方法,如果忽视了对它的挖掘,解题能力就得不到提高。因此,在解题后,要经常总结题目及解法的规律,只有勤反思,才能“站得高山,看得远,驾驭全局”,才能提高自己分析问题的能力。
8、要养成纠错订正的习惯,提高自我评判能力。 要养成积极进取,不屈不挠,耐挫折,不自卑的心理品质,对做错的题要反复琢磨,寻找错因,进行更正,整理归纳成为错题集,养成良好的习惯,不少问题就会茅塞顿开,割然开朗,迎刃而解,从而提高自我评判能力。
9、要养成善于交流的习惯,提高表达能力。 在数学学习过程中,对一些典型问题,同学们应善于合作,各抒己见,互相讨论,取人之长,补己之短,也可主动与老师交流,说出自己的见解和看法,在老师的点拨中,他的思想方法会对你产生潜移默化的影响。因此,只有不断交流,才能相互促进、共同发展,提高表达能力。如果固步自封,就会造成钻牛角尖,浪费不必要的时间。
10、要养成归纳总结的习惯,提高概括能力。 每学完一节一章后,要按知识的逻辑关系进行归纳总结,使所学知识系统化、条理化、专题化,这也是再认识的过程,对进一步深化知识积累资料,灵活应用知识,提高概括能力将起到很好的促进作用。
总之,同学们要养成良好的学习习惯,勤奋的学习态度,科学的学习方法,充分发挥自身的主体作用,不仅学会,而且会学,只有这样,才能取得事半功倍的效果。
歌颂党的作文800字4
1、一个充分条件,浓厚的兴趣与动力
数学是如此的重要,生活中的股票、存款利率、增长率、几个百分点、最少用料、最大利润、风险决策……哪一样不与数学有关。就高考而言,数学占150分,特殊的地位决定了应有特殊的驱动力,尤其要培养对数学的兴趣与感觉,要创造一个一个小小的成功,因为兴趣总是与成功联系在一起的,如听懂课,掌握一种好的解题方法,解出一道道数学难题等。可是有的同学因基础不扎实,就是对数学没感觉,怎么办?我的建议是,假喜真干,就是假装喜欢并且付出实际行动。美国著名教育家戴尔?卡耐基提出:“假如你‘假装’对工作、对学习感兴趣,这态度往往就使你的兴趣变成真的,这种态度还能减少疲劳、紧张和忧虑。”所以,心态的改变所产生的力量,神妙无比。
2、三个必要条件,“双基”,努力,熟练
必须扎实基础,一个“双基”很差的学生,数学能力无从谈起,对这部分基础欠缺的同学就要降低复习重心。现在的高考容易题、中等题、难题的比例为4:5:1,也表明了基础知识的重要性,这就要努力,要求知识点到边到角。大量的调查分析表明,数学高考中,考生用于思考的时间最多只有85分钟,此等情势逼迫你必须熟练。
首先要改变观念。
初中阶段,特别是初中三年级,通过大量的练习,可使你的成绩有明显的提高,这是因为初中数学知识相对比较浅显,更易于掌握,通过反复练习,提高了熟练程度,即可提高成绩,既使是这样,对有些问题理解得不够深刻甚至是不理解的。例如在初中问a=2时,a等于什么,在中考中错的人极少,然而进入高中后,老师问,如果a=2,且a<0,那么a等于什么,既使是重点学校的学生也会有一些同学毫不思索地回答:a=2。就是以说明了这个问题。又如,前几年北京四中高一年级的一个同学在高一上学期期中考试以后,曾向老师提出“抗议”说:“你们平时的作业也不多,测验也很少,我不会学”,这也正说明了改变观念的重要性。
高中数学的理论性、抽象性强,就需要在对知识的理解上下功夫,要多思考,多研究。
提高听课的效率是关键。
学生学习期间,在课堂的时间占了一大部分。因此听课的效率如何,决定着学习的基本状况,提高听课效率应注意以下几个方面:
1、 课前预习能提高听课的针对性。
预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习还可以培养自己的自学能力。
2、 听课过程中的科学。
首先应做好课前的物质准备和精神准备,以使得上课时不至于出现书、本等物丢三落四的现象;上课前也不应做过于激烈的体育运动或看小书、下棋、打牌、激烈争论等。以免上课后还喘嘘嘘,或不能平静下来。
其次就是听课要全神贯注。
全神贯注就是全身心地投入课堂学习,耳到、眼到、心到、口到、手到。
耳到:就是专心听讲,听老师如何讲课,如何分析,如何归纳总结,另外,还要听同学们的答问,看是否对自己有所启发。
眼到:就是在听讲的同时看课本和板书,看老师讲课的表情,手势和演示实验的动作,生动而深刻的接受老师所要表达的思想。
心到:就是用心思考,跟上老师的数学思路,分析老师是如何抓住重点,解决疑难的。
口到:就是在老师的指导下,主动回答问题或参加讨论。
手到:就是在听、看、想、说的基础上划出课文的重点,记下讲课的要点以及自己的感受或有创新思维的见解。
若能做到上述“五到”,精力便会高度集中,课堂所学的一切重要内容便会在自己头脑中留下深刻的印象。
3、 特别注意老师讲课的开头和结尾。
老师讲课开头,一般是概括前节课的要点指出本节课要讲的内容,是把旧知识和新知识联系起来的环节,结尾常常是对一节课所讲知识的归纳总结,具有高度的概括性,是在理解的基础上掌握本节知识方法的纲要。
4、要认真把握好思维逻辑,分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,提高思维和解决问题的能力。
此外还要特别注意老师讲课中的提示。
老师讲课中常常对一些重点难点会作出某些语言、语气、甚至是某种动作的提示。
最后一点就是作好笔记,笔记不是记录而是将上述听课中的要点,思维方法等作出简单扼要的记录,以便复习,消化,思考。
做好复习和总结工作。
1、做好及时的复习。
课完课的当天,必须做好当天的复习。
复习的有效方法不是一遍遍地看书或笔记,而是采取回忆式的复习:先把书,笔记合起来回忆上课老师讲的内容,例题:分析问题的思路、方法等(也可边想边在草稿本上写一写)尽量想得完整些。然后打开笔记与书本,对照一下还有哪些没记清的,把它补起来,就使得当天上课内容巩固下来,同时也就检查了当天课堂听课的效果如何,也为改进听课方法及提高听课效果提出必要的改进措施。
2、 做好单元复习。
学习一个单元后应进行阶段复习,复习方法也同及时复习一样,采取回忆式复习,而后与书、笔记相对照,使其内容完善,而后应做好单元小节。
3做好单元小结。
单元小结内容应包括以下部分。
(1)本单元(章)的知识网络;
(2)本章的基本思想与方法(应以典型例题形式将其表达出来);
(3)自我体会:对本章内,自己做错的典型问题应有记载,分析其原因及正确答案,应记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
关于做练习题量的问题
有不少同学把提高数学成绩的希望寄托在大量做题上。我认为这是不妥当的,我认为,“不要以做题多少论英雄”,重要的不在做题多,而在于做题的效益要高。做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的练习是必要的.。而对于中档题,尢其要讲究做题的效益,即做题后有多大收获,这就需要在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过,把它们联系起来,你就会得到更多的经验和教训,更重要的是养成善于思考的好习惯,这将大大有利于你今后的学习。当然没有一定量(老师布置的作业量)的练习就不能形成技能,也是不行的。
另外,就是无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,也是学好数学的重要问题。
最后想说的是:“兴趣”和信心是学好数学的最好的老师。这里说的“兴趣”没有将来去研究数学,做数学家的意思,而主要指的是不反感,不要当做负担。“伟大的动力产生于伟大的理想”。只要明白学习数学的重要,你就会有无穷的力量,并逐步对数学感到兴趣。有了一定的兴趣,随之信心就会增强,也就不会因为某次考试的成绩不理想而泄气,在不断总结经验和教训的过程中,你的信心就会不断地增强,你也就会越来越认识到“兴趣”和信心是你学习中的最好的老师。
歌颂党的作文800字5
一、理解基本概念
数学大厦是由一个个公理、定义、定理作基础砌成的,加强对这些概念的理解,有助于我们解题。且不谈对集合、极限、三垂线这些内涵丰富的概念的理解,单是从“a大于b”的定义上就可挖掘出很多东西。书上如此定义:“如果a-b>0,则称a>b”,从定义我们可以直接得到判定两个数大小的一种方法------作差比较法,深入思考可得a=b+△x(△x>0)(增量代换法),a>a+b/2>b(放缩法)等。越是这样深入想,就越觉得数学有无穷魅力。
二、总结实践经验
高三时,题目得很多,这就得从题目中理出一个头绪来,掌握通性法。例如,做了不少不等式的证明题后,可总结也证不等式的基本方法为:比较法(作差、作商)、公式法、判别式法、数学归纳法等,特殊方法有放缩法,常用技巧有“图像法”、“换元法”、
“裂项法”等。总结之后,对运用这些方法解出的典型题目做一个回忆,加深印象,达到“见过的题目类型会做,棘手的题目可用这些方法分别去做”的境界,解题能力大为提高。
做题目难免出错,要对常出错的地方进行总结,写出错因,并用一个本子记下来(不必记题目)。例如:等比数列求和要考虑公比是否为1,偶次根号下的数要大于0(实数),除数不能为0等等。
应该说,每次考试后,总有自己的一些对解题的体会,不妨定在一个本子上。如:考试时应注重时间的分配,解题速度如何,是计算出错还是方法不对,书写要整洁有条理等。
通过这些总结,对自己有了更深地了解,哪些地方娴熟,哪些地方薄弱,然后对症下药,使自己的知识完善,技能得到提高。
三、形成知识网络
在做好一、二点的基础上,要形成自己的.知识网络,“由厚变薄”。高中数学知识包括代数、立体几何、解析几何,其中代数分支较多,包括集合、函数、不等式、数列与极限、复数、排列组合、二项式定理。各章又可细分,于是形成了一个大的网络。不过,要构建这个大网络,首先得构建好一个个小网络,即对每一个章节进行构建,内容包括概念、重点、基本解法与数学思想、易出错点与其他知识联接点等,待第一轮复习后,花大概两天的功夫将这些小网络并成大网络,在以后的复习中不断对这个网络补充,加深印象。
我想,经过了这样的三步曲,我们的数学理论知识就会得到大大的提高,加上不断地解题实践,我们的思维就会活跃,自信心就会增强,每次考试前回想一下网络,我们就会胸有成足地去面对考试,走向胜利!
歌颂党的作文800字6
考试的内容与要求
函数是描述数学对象变化规律的重要教学模型,是中学数学的主体内容。函数在中学阶段分别设有函数(函数概念、单调性、奇偶性、周期性、对称性、极值、图象等),指数函数与对数函数,三角函数,函数的应用等。它既是初中函数内容的继续与提高,也为高中数学的进一步学习奠定基础。
向量是既有大小又有方向的量,具有“数”和“形”的双重特点,是一种广泛应用的数学工具。平面向量学习的主要内容是四种运算,共线与垂直的判断方法,夹角与长度的计算等。
本次期末考试对上述内容的考查,既全面又突出重点,既注重知识的指导性与思想性,又考虑到各个章节的考试要求和相对独立性,所以建议在期末复习时,要注重基本概念、基本符号、基本性质、基本运算的复习与检查落实,选择一些体现数学思想、数学方法、有助于提高学生能力的典型题目进行巩固训练,达到提高复习效果的目的。
具体步骤
1、回归课本、明确复习范围及重点范围
本学期我们高一学习了必修1、必修4两本教材。先把考查的内容分类整理,理清脉络,使考查的知识在心中形成网络系统,并在此基础上明确每一个考点的'内涵与外延。在建立知识系统的同时,同学们还要根据考纲要求,掌握试卷结构,明确考查内容、考查的重难点及题型特点、分值分配,使知识结构与试卷结构组合成一个结构体系,并据此进一步完善自己的复习结构,使复习效果事半功倍。
2、弄懂基本概念
先把你以前学过的却不懂的知识,概念,定理再结合课本、笔记复习,直到弄懂为止。
3、弄会基本方法
复习课上,老师会把最基本,最重要的思想、方法再过一遍,这时候一定认真听(为什么有的同学好像平时没怎么好好学,可是考试成绩不错呢,就是因为他抓紧了这段时间),当然,既然是“过”一遍,不可能还像刚开始讲课那样详细,因此课后你一定要对老师讲的方法做针对性练习,真正把数学复习计划落实到实处。
熟练掌握数学方法,以不变应万变。一般同一份试卷,相同方法不可能出现多次;同时,数学的主要方法在一份试卷上基本都能用得上。因此遇到思路一下不能突破的难题,要好好想想以前遇到的类似的问题是如何处理的,在已经作答好的题目中用过了哪些方法,常用的方法还有哪些没用得上,能否用来解决这个难题,只要平时多加分析,是不难发现解题思路的。
三、考试方法指导
1、规范作答争取少扣分
一些同学考试时题题被扣分,大多是答题不规范,抓不住得分要点。如立体几何证明的次要条件要交待,分类讨论问题最后有综上可得,应用题最后要回答题目的设问,函数应用题要有定义域等。另外,有的题目是你以前会做,但是过这么长时间了,有可能思路忘了;有的题目你有思路,但是具体的一些解题细节不一定很清楚。的克服办法就是,数学复习计划中,无论做没做过,以前是否会做,都当成新题再做一遍!
2、掌握好看与做的时间分配
好多同学都觉得几天不做数学题后再考试,审题就会迟疑缓慢,入手不顺,运算不畅且易出错。所以每天必须坚持做适量的练习,特别是重点和热点题型,防止思想退化和惰化,保持思维的灵活和流畅。特别是停课复习期间,更要掌握好看和做的时间分配。
3、解题过程
(1)弄清问题.即从题目本身去获得从何处下手、向何方前进的信息。要逐字逐句地分析条件、分析结论、分析条件与结论之间的关系。
(2)拟定计划.也就是寻找解题思路。
(3)实现计划.就是把打通了的解题思路用文字具体表达出来。做到:方法简单、起点明确、层次清楚、定理准确、论证严密、书写规范。
掌握每一个公式定理
做课本的例题,课本的例题的思路比较简单,其知识点也是单一不会交叉的,如果课本上的例题你拿出来都会做了,说明你已经具备了一定的理解力。
做课后练习题,前面的题是和课本例题一个级别的,如果课本上所有的题都会做了,那么基础夯实可以告一段落。
进行专题训练提高数学成绩
1.做高中数学题的时候千万不能怕难题!有很多人数学分数提不动,很大一部分原因是他们的畏惧心理。有的人看到圆锥曲线和导数,看到稍微长一点的复杂一点的叙述,甚至看到21、22就已经开始退却了。这部分的分数,如果你不去努力,永远都不会挣到的,所以第一个建议,就是大胆的去做。前面亏欠数学这门学科太多,就算让它打肿了又怎样,后面一点一点的强大起来,总有那么一天你去打它的脸。
2.错题本怎么用。和记笔记一样,整理错题不是誊写不是照抄,而是摘抄。你只顾着去采撷问题,就失去了理解和挑选题目的过程,笔记同理,如果老师说什么记什么,那只能说明你这节课根本没听,真正有效率的人,是会把知识简化,把书本读薄的。先学学你能思考到答案的哪一步,学着去偷分。当然,因人而异,如果你觉得还有哪些题需要整理也可以记下来。
歌颂党的作文800字7
1、培养良好的学习习惯。
良好的学习习惯包括制定学习计划、课前预习、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
(1)制定计划明确学习目的。合理的学习计划是推动我们主动学习和克服困难的内在动力。计划先由老师指导督促,再一定要由自己切实完成,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。
(2)课前预习是取得较好学习效果的基础。课前预习不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习的主动权。预习不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上。
(3)上课是理解和掌握基本知识、基本技能和基本方法的关键环节。“学然后知不足”,上课更能专心听重点难点,把老师补充的内容记录下来,而不是全抄全录,顾此失彼。
(4)及时复习是提高效率学习的重要一环。通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比效,一边复习一边将复习成果整理在笔记本上,使对所学的新知识由“懂”到“会”。
(5)独立作业是通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。这一过程也是对我们意志毅力的考验,通过运用使我们对所学知识由“会”到“熟”。
(6)解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神。做错的作业再做一遍。对错误的地方没弄清楚要反复思考。实在解决不了的'要请教老师和同学,并要经常把易错的地方拿来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。
(7)系统小结是通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与资料,通过分析、综合、类比、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由“活”到“悟”。
(8)课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。课外学习是课内学习的补充和继续,它不仅能丰富同学们的文化科学知识,加深和巩固课内所学的知识,而且能够满足和发展我们的兴趣爱好,培养独立学习和工作的能力,激发求知欲与学习热情。
2、循序渐进,积极归因,防止急躁。
由于高一同学年龄较小,阅历有限,为数不少的同学容易急躁。有的同学贪多求快,囫囵吞枣,想靠几天“冲刺”一蹴而就。学习是一个长期的巩固旧知、发现新知的积累过程,决非一朝一夕可以完成的。许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度。让高一同学学会积极归因,树立自信心,如:取得一点成绩及时体会成功,强化学习能力;遇到挫折及时调整学习方法、策略,更加努力改变挫折,循序渐进,争取在高考成功。
3、注意研究学科特点,寻找最佳高中数学学习方法。
数学学科担负着培养运算能力、逻辑思维能力、空间想象能力,以及运用所学知识分析问题、解决问题的能力的重任。其中运算能力的培养一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行,教学中进行一题多解思考,优化运算策略;逻辑思维能力是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高,使用归类、网联策略,区别好几个概念:三段式推理、四种命题和充要条件的关系;空间想象能力对平面知识的扩充既要能钻进去,又要能跳出来,结合立体几何,体会图形、符号和文字之间的互化;运用所学知识分析问题、解决问题的能力,就是要重视应用题的转化训练,归类数学模型,体会数学语言。华罗庚先生倡导的“由薄到厚”和“由厚到薄”的学习过程就是这个道理,方法因人而异,但学习的四个环节(预习、上课、作业、复习)和一个步骤(归纳总结)是少不了的。
高一数学是高中学习一个艰苦的磨炼,经过了这个阶段的砺炼,就会打开高中数学的学习思维,前面的道路就会豁然开朗,只要同学们增强信心,再掌握正确的高中数学学习方法,付出的努力一定会有回报。
歌颂党的作文800字8
高中数学学习方法:其实就是学习解题
高中数学是应用性很强的学科,学习数学就是学习解题。搞题海战术的方式、方法固然是不对的,但离开解题来学习数学同样也是错误的。其中的关键在于对待题目的态度和处理解题的方式上。
1、首先是精选题目,做到少而精。
只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。
2、其次是分析题目。
解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的灵活应用能力。例如,许多三角方面的题目都是把角、函数名、结构形式统一后就可以解决问题了,而选择怎样的三角公式也是成败的关键。
3、最后,题目总结。
解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足的,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的题目,有以下几个方面需要总结:
①在知识方面,题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。
②在方法方面:如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。
③能不能把解题过程概括、归纳成几个步骤(比如用数学归纳法证明题目就有很明显的三个步骤)。
④能不能归纳出题目的类型,进而掌握这类题目的解题通法(我们反对老师把现成的题目类型给学生,让学生拿着题目套类型,但我们鼓励学生自己总结、归纳题目类型)。
【摘要】“高中数学多边形内角和公式”数学公式是解题的要点,要灵活运用,希望下面公式为大家带来帮助:
设多边形的边数为N
则其内角和=(N-2)*180°
因为N个顶点的N个外角和N个内角的和
=N*180°
(每个顶点的一个外角和相邻的内角互补)
所以N边形的外角和
=N*180°-(N-2)*180°
=N*180°-N*180°+360°
=360°
即N边形的外角和等于360°
设多边形的边数为N
则其外角和=360°
因为N个顶点的N个外角和N个内角的和
=N*180°
(每个顶点的一个外角和相邻的内角互补)
所以N边形的内角和
=N*180°-360°
=N*180°-2*180°
=(N-2)*180°
即N边形的内角和等于(N-2)*180°
如何学好数学
首先和敏捷对于来说固然重要,但良好的可以把效果提高几倍,这是先天因素不可比拟的。学好首先要过的是关。任何事情都有一个由量变到质变的循序渐进的积累过程。
一.。不等于浏览。要深入了解内容,找出重点,难点,疑点,经过思考,标出不懂的,有益于抓住重点,还可以培养自学,有时间还可以超前学习。
二.听讲。核心在。1。以听为主,兼顾记录。2。注重过程,轻结论。
3.有重点。4。提高听课。
三.。像演电影一样把课堂,整理笔记,
四.多做练习。1。晚上吃饭后,坐到书桌时,看数学最适合,2。做一道数学题,每一步都要多问个别为什么,不能只满足于课堂上的灌输式传授和书本上的简单讲述,要想提高必须要一步一步推 高中历史,一步一步想,每个过程都必不可少,3。不要粗心大意,4。做完每一道题,要想想为什么会想到这样做,建立一种条件发射,关键在于每做一道题要从中得到东西,错在哪,5。解题都有固定的套路。6还有大胆的夸奖自己,那是树立信心的关键时刻,
五.总结。1。要将所学的知识变成知识网,从大主干到分枝,清晰地深存在脑中,新题想到老题,从而一通百通。2。建立错误集,错误多半会错上两次,在有意识改正的情况下,还有可能错下去,最有效的应该是会正确地做这道题,并在下次遇到同样情况时候有注意的意识。3。周末再将一周做的题回头看一番,提出每道题的思路方法。4有问题一定要问。
六.考前复习,1。前2周就要开始复习,做到心中有数,否则会影响发挥,再做一遍以前的错题是十分必要的,据说有一个同学平时只有一百零几,离只有一个月,把以前错题从头做一遍,最后他数学居然得了147分。2。要重视基础,
另外,听老师的话,勤学苦练不可少,没有捷径,要乐观,有毅力,要有决心,还要有耐心,学数学是一个很长的过程,你的努力于回报往往不能那么尽如人意的成正比,甚至会有下坡路的趋势,但只要坚持下去,那条成绩线会抬起头来,一定能看到光明。
《希腊文集》中的方程问题
《希腊文集》是一本用诗歌写成的问题集,主要是六韵脚诗。荷马著名的长诗《伊丽亚特》和《奥德赛》就是用这种诗体写成的。
《希腊文集》中有一道关于毕达哥拉斯的问题。毕达哥拉斯是古希腊著名数学家,生活在公元前六世纪。问题是:一个人问:“尊敬的毕达哥拉斯,请告诉我,有多少学生在你的学校里听你讲课?”毕达哥拉斯回答说:“一共有这么多学生在听课,其中 在学习数学, 学习音乐, 沉默无言,此外,还有3名妇女。”
我们用现代方法来解:设听课的学生有x人,根据题目条件可列出方程
这是一个一元一次方程。
移项,得
答:毕达哥拉斯有28名学生听课。
《希腊文集》中还有一些用童话形式写成的数学题。比如“驴和骡子驮货物”这道题,就曾经被大数学家欧拉改编过。题目是这样的:
“驴和骡子驮着货物并排走在路上。驴不住地往地埋怨自己驮的货物太重,压得受不了。骡子对驴说:‘你发什么牢骚啊!我驮得的货物比你重。假若你的货物给我一口袋,我驮的货就比你驮的重一倍,而我若给你一口袋,咱俩驮和的才一样多。’问驴和骡子各驮几口袋货物?”
这个问题可以用方程组来解:
设驴驮x口袋,骡子驮y口袋。则驴给骡子一口袋后,驴还剩x-1,骡子成了y+1,这时骡子驮的是驴的二倍,所以有
2(x-1)=y+1 (1)
又因为骡子给驴一口袋后,骡子还剩下y-1,驴成了x+1,此时骡子和驴驮的相等,有
x+1=y-1 (2)
(1)与(2)联立,有
这是一个二元一次议程组。
(1)-(2)得 x-3=2,
x=5 (3)
将(3)代入(2),得y=7。
答:驴原来驮5口袋,骡子原来驮7口袋。
《希腊文集》有一道名的题目“爱神的烦恼”。这里有许多神的名字,先介绍一下:爱罗斯是希腊神话中的爱神,吉波莉达是赛浦路斯岛的守护神。9位文艺女神中,叶芙特尔波管简乐,爱拉托管爱情诗,达利娅管吉剧,特希霍拉管舞蹈,美利波美娜管悲剧,克里奥管历史,波利尼娅管颂歌,乌拉尼娅管天文,卡利奥帕管史诗。
这道题也是用诗歌形式写在的:
爱罗斯在路旁哭泣,
泪水一滴接一滴。
吉波莉达向前问道:波利尼
“是什么事情使你如此伤悲?
我可能够帮助你?”
爱罗斯回答道:
“九位文艺女神
不知来自何方
把我从赫尔康山采回的苹果,
几乎一扫而光,
叶芙特尔波飞快地抢走十二分之一,
爱拉托抢得更多——
七个苹果中拿走一个。
八分之一被达利娅抢走,
比这多一倍的苹果落入特希霍拉之手。
美利波美娜最是客气,
只取走二十分之一。
可又来了克里奥,
她的收获比这多四倍。
还有三位女神,
个个都不空手,
30个归波利尼娅,
120个归乌拉尼娅,
300个归卡利奥帕。
我,可怜的爱罗斯。
爱罗斯原有多少个苹果?还剩下50个苹果。”
设爱罗斯原来有x个苹果,则6位文艺女神抢走的苹果分别是 。
可列出方程
答:爱罗斯原来有苹果3360个。
选自《中学生数学》20xx年5月下
20xx高考数学复习三步曲
编者按:小编为大家收集了“20xx高考数学复习三步曲”,供大家参考,希望对大家有所帮助!
今年高考文理科的数学试卷总体难度不大,为师生所接受。文科试卷难易程度适中,尤其是填空题和选择题难度不大,解答题难易程度和试题坡度安排都比较合理,有利于考生的发挥,也有利于指导以后的学习。
理科试卷容易题、中等题和难题比例恰当,注重逻辑思维能力和表达能力(运用数学符号)以及数形结合能力的考查,部分试题新而不难,开放题有所体现,把能力的考查落到实处。但我个人认为,今年试卷对高中数学的主干知识的核心内容考查不到位,但不等于我们今后可以完全不重视。
抓基础:不变应万变
把基础知识和基本技能落到实处。唯有如此才能以不变应万变。比如,文科第22题是一道经典题型,考查圆锥曲线上一点到定点距离,既考老师又考学生。所谓考老师是说这样的题型你讲过没有,是怎么讲的?学生的典型错误(以定点为圆心作一个与椭圆相切的圆,再利用判别式等于0)是怎么纠正?正确解法(转化为二次函数在某个区间上的最值)是怎么想到的?只有经过这样的教学环节,学生才能真正理解。所谓考学生是说你自己做错了,老师重点讲评了的经典问题,你掌握了没有?掌握的标准是能否顺利解答相应的变式问题。由于第(3)含有参数,需要分类讨论,能有效甄别考生的思维水平和运算能力。本题以椭圆(解析几何重点内容之一)为载体,考查把几何问题转化为代数问题的能力(这是解析几何的核心思想),以及含参数的二次函数求最值问题(也是代数中的重点和难点),一举多得。
当然,可能会有人认为这道题形式不新,其实,要求考题全新既无必要,也不可能,只要有利于高校选拔和中学教学就好,不必过分求新、求异。
理科的第22题相对较难,不少同学反映不好表述。若能从集合的包含关系这个角度考虑,则容易表述,部分考生是直接对两个数列进行分类,由于要用到一些多数学生不熟悉的整除知识,因而感到困难,无法下手。这就体现基础知识和基本技能的重要性。
尽管今年理科试卷在知识点分布上有些不尽如人意,但复习不能受此影响,仍然要全面、扎实复习,不能留下知识点的死角,相应的技能、技巧要牢固掌握,思想方法都要总结到位,这样才能“不管风吹浪打,胜似闲庭信步”。
破难题:提升应对力
如何应对“题梗阻”?考试中遇到不会做的题目很正常,有些同学会因此影响临场发挥。考生进考场就像运动员进运动场,心理素质很重要,把心理辅导和答题技巧融于学习之中。在高三复习过程中,不仅要讲数学知识,同时还要训练学生的心理素质和培养学生的答题技巧,这样才能使学生在考场上应付裕如,出色发挥,考出好成绩。
理科的22题第(2)卡住不少考生,耽误时间还影响心情,以致第(3)和后面第23题来不及或无心去做,其实,做第(3)题用不到第(2)的结论。而第23题是新编的开放性问题,首先要静心才能读懂题目,而读懂题目至少第(1)、(2)两题不难。要做到这些并不容易,不是临考前“先易后难”一句话学生就能做到,需要在平时教学过程中结合具体问题,训练学生的心理素质,提高其在解题过程中遇到困难时的应变能力,掌握应变策略,才能在考场上“敢于放弃”,从容跳过不会做的题或在解答题中跳步解答,把自己能做的题目先做对,把应得的分得到,这样考试总是成功的,无论分数高低。
为何时间与成绩不成正比?高三数学就是大量解题,有些重点中学的优秀学生的高考成绩甚至不比高二时考分高,岂不是白学?其实,这是误解。数学讲究逻辑,问题从哪里来(已知),到哪里去(求证),中间有哪些沟沟坎坎(思维障碍),怎么克服(怎样进行等价转化),不仅是照葫芦画瓢的操作性(当然也是必要的)训练,更重要的是以数学知识为载体,让学生学会思考问题的方式方法,还要在解题后对问题作归纳总结,找出规律,有时还要把问题作适当推广,把学生的逻辑思维引到辩证思维。这样经过一年的高三数学学习,学生收获的不仅是分数,还有对人终生受用的思维品质的提高。
重方法:培养好品质
有些同学做了许多题,就是成绩提高不见提高,自己和家长都很纳闷。其实学习数学关键是要掌握方法,同时还要培养敢于做难题、新题的胆量和毅力。重复性操作的题目做再多,意义也不大。对待难题的态度是培养学生意志品质的好时机,不能轻易错过(当然也要因人而异)。有些同学往往认为只要弄懂思路,不必解到底。其实,这样的同学往往眼高手低,会而不对,考试成绩忽高忽低,原因在于某些细节处理不当,造成“一失足成千古恨”,事后以粗心搪塞过去。这就需要老师对学生深入了解,结合具体问题给予悉心指导,帮助学生找出真实原因,并制定改正错误的办法,这一过程表面上是帮助学生学会解题,实际上对学生意志品质的培养也就潜移默化地得到了落实。
我们有理由相信,把解题和人的素质培养有机结合的高三数学教学,不仅能提高学生的解题能力,还能促使他们健康成长,让我们一起努力!
以上就是为大家提供的“20xx高考数学复习三步曲”希望能对考生产生帮助,更多资料请咨询中考频道。
生物数学概论
生物数学是生物学与数学之间的边缘学科。它以数学方法研究和解决生物学问题,并对与生物学有关的数学方法进行理论研究。
生物数学的分支学科较多,从生物学的应用去划分,有数量分类学、数量遗传学、数量生态学、数量生理学和生物力学等;从研究使用的数学方法划分,又可分为生物统计学、生物信息论、生物系统论、生物控制论和生物方程等分支。这些分支与前者不同,它们没有明确的生物学研究对象,只研究那些涉及生物学应用有关的数学方法和理论。
生物数学具有丰富的数学理论基础,包括集合论、概率论、统计数学、对策论、微积分、微分方程、线性代数、矩阵论和拓扑学,还包括一些近代数学分支,如信息论、图论、控制论、系统论和模糊数学等。
由于生命现象复杂,从生物学中提出的数学问题往往十分复杂,需要进行大量计算工作。因此,计算机是研究和解决生物学问题的重要工具。然而就整个学科的内容而论,生物数学需要解决和研究的本质方面是生物学问题,数学和电脑仅仅是解决问题的工具和手段。因此,生物数学与其他生物边缘学科一样通常被归属于生物学而不属于数学。
生命现象数量化的方法,就是以数量关系描述生命现象。数量化是利用数学工具研究生物学的前提。生物表现性状的数值表示是数量化的一个方面。生物内在的或外表的,个体的或群体的,器官的或细胞的,直到分子水平的各种表现性状,依据性状本身的生物学意义,用适当的数值予以描述。
数量化的实质就是要建立一个集合函数,以函数值来描述有关集合。传统的集合概念认为一个元素属于某集合,非此即彼、界限分明。可是生物界存在着大量界限不明确的模糊现象,而集合概念的明确性不能贴切地描述这些模糊现象,给生命现象的数量化带来困难。1965年扎德提出模糊集合概念,模糊集合适合于描述生物学中许多模糊现象,为生命现象的数量化提供了新的数学工具。以模糊集合为基础的模糊数学已广泛应用于生物数学。
数学模型是能够表现和描述真实世界某些现象、特征和状况的数学系统。数学模型能定量地描述生命物质运动的过程,一个复杂的生物学问题借助数学模型能转变成一个数学问题,通过对数学模型的逻辑推理、求解和运算,就能够获得客观事物的有关结论,达到对生命现象进行研究的目的。
比如描述生物种群增长的费尔许尔斯特-珀尔方程,就能够比较正确的表示种群增长的规律;通过描述捕食与被捕食两个种群相克关系的洛特卡-沃尔泰拉方程,从理论上说明:农药的滥用,在毒杀害虫的同时也杀死了害虫的天敌,从而常常导致害虫更猖獗地发生等。
还有一类更一般的方程类型,称为反应扩散方程的数学模型在生物学中广为应用,它与生理学、生态学、群体遗传学、医学中的流行病学和药理学等研究有较密切的关系。60年代,普里戈任提出著名的耗散结构理论,以新的观点解释生命现象和生物进化原理,其数学基础亦与反应扩散方程有关。
由于那些片面的、孤立的、机械的研究方法不能完全满足生物学的需要,因此,在非生命科学中发展起来的数学,在被利用到生物学的研究领域时就需要从事物的多方面,在相互联系的水平上进行全面的研究,需要综合分析的数学方法。
多元分析就是为适应生物学等多元复杂问题的需要、在统计学中分化出来的一个分支领域,它是从统计学的角度进行综合分析的数学方法。多元统计的各种矩阵运算,体现多种生物实体与多个性状指标的结合,在相互联系的水平上,综合统计出生命活动的特点和规律性。
生物数学中常用的多元分析方法有回归分析、判别分析、聚类分析、主成分分析和典范分析等。生物学家常常把多种方法结合使用,以期达到更好的综合分析效果。
多元分析不仅对生物学的理论研究有意义,而且由于原始数据直接来自生产实践和科学实验,有很大的实用价值。在农、林业生产中,对品种鉴别、系统分类、情况预测、生产规划以及生态条件的'分析等,都可应用多元分析方法。医学方面的应用,多元分析与电脑的结合已经实现对疾病的诊断,帮助医生分析病情,提出治疗方案。
系统论和控制论是以系统和控制的观点,进行综合分析的数学方法。系统论和控制论的方法没有把那些次要的因素忽略,也没有孤立地看待每一个特性,而是通过状态方程把错综复杂的关系都结合在一起,在综合的水平上进行全面分析。对系统的综合分析也可以就系统的可控性、可观测性和稳定性作出判断,更进一步揭示该系统生命活动的特征。
在系统和控制理论中,综合分析的特点还表现在把输出和状态的变化反馈对系统的影响,即反馈关系也考虑在内。生命活动普遍存在反馈现象,许多生命过程在反馈条件的制约下达到平衡,生命得以维持和延续。对系统的控制常常靠反馈关系来实现。
生命现象常常以大量、重复的形式出现,又受到多种外界环境和内在因素的随机干扰。因此概率论和统计学是研究生物学经常使用的方法。生物统计学是生物数学发展最早的一个分支,各种统计分析方法已经成为生物学研究工作和生产实践的常规手段。
概率与统计方法的应用还表现在随机数学模型的研究中。原来数学模型可分为确定模型和随机模型两大类如果模型中的变量由模型完全确定,这是确定模型;与之相反,变量出现随机性变化不能完全确定,称为随机模型。又根据模型中时间和状态变量取值的连续或离散性,有连续模型和离散模型之分。前述几个微分方程形式的模型都是连续的、确定的数学模型。这种模型不能描述带有随机性的生命现象,它的应用受到限制。因此随机模型成为生物数学不可缺少的部分。
60年代末,法国数学家托姆从拓扑学提出一种几何模型,能够描绘多维不连续现象,他的理论称为突变理论。生物学中许多处于飞跃的、临界状态的不连续现象,都能找到相应的跃变类型给予定性的解释。跃变论弥补了连续数学方法的不足之处,现在已成功地应用于生理学、生态学、心理学和组织胚胎学。对神经心理学的研究甚至已经指导医生应用于某些疾病的临床治疗。
继托姆之后,跃变论不断地发展。例如塞曼又提出初级波和二级波的新理论。跃变理论的新发展对生物群落的分布、传染疾病的蔓延、胚胎的发育等生物学问题赋予新的理解。
上述各种生物数学方法的应用,对生物学产生重大影响。20世纪50年代以来,生物学突飞猛进地发展,多种学科向生物学渗透,从不同角度展现生命物质运动的矛盾,数学以定量的形式把这些矛盾的实质体现出来。从而能够使用数学工具进行分析;能够输入电脑进行精确的运算;还能把来自名方面的因素联系在一起,通过综合分析阐明生命活动的机制。
总之,数学的介入把生物学的研究从定性的、描述性的水平提高到定量的、精确的、探索规律的高水平。生物数学在农业、林业、医学,环境科学、社会科学和人口控制等方面的应用,已经成为人类从事生产实践的手段。
数学在生物学中的应用,也促使数学向前发展。实际上,系统论、控制论和模糊数学的产生以及统计数学中多元统计的兴起都与生物学的应用有关。从生物数学中提出了许多数学问题,萌发出许多数学发展的生长点,正吸引着许多数学家从事研究。它说明,数学的应用从非生命转向有生命是一次深刻的转变,在生命科学的推动下,数学将获得巨大发展。
当今的生物数学仍处于探索和发展阶段,生物数学的许多方法和理论还很不完善,它的应用虽然取得某些成功,但仍是低水平的、粗略的、甚至是勉强的。许多更复杂的生物学问题至今未能找到相应的数学方法进行研究。因此,生物数学还要从生物学的需要和特点,探求新方法、新手段和新的理论体系,还有待发展和完善。
20xx年高考数学命题预测之立体几何
【编者按】近几年高考立体几何试题以基础题和中档题为主,热点问题主要有证明点线面的关系,如点共线、线共点、线共面问题;证明空间线面平行、垂直关系;求空间的角和距离;利用空间向量,将空间中的性质及位置关系的判定与向量运算相结合,使几何问题代数化等等。考查的重点是点线面的位置关系及空间距离和空间角,突出空间想象能力,侧重于空间线面位置关系的定性与定量考查,算中有证。其中选择、填空题注重几何符号语言、文字语言、图形语言三种语言的相互转化,考查学生对图形的识别、理解和加工能力;解答题则一般将线面集中于一个几何体中,即以一个多面体为依托,设置几个小问,设问形式以证明或计算为主。
20xx年高考中立体几何命题有如下特点:
1.线面位置关系突出平行和垂直,将侧重于垂直关系。
2.多面体中线面关系论证,空间“角”与“距离”的计算常在解答题中综合出现。
3.多面体及简单多面体的概念、性质多在选择题,填空题出现。
4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点。
此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题
歌颂党的作文800字9
在大学课程的学习中,有诸多的公共基础课程,而大学数学就是其中很重要的一门,是几乎各个专业后续学习的基础,同时也是培养我们逻辑思维能力的有力工具,大学数学对刚刚从高中数学模式转变过来的学生学习有着非常大的影响。通过上课现状来看,大学一年级学生普遍反映数学难学,学习积极性不高。数学本身就是一门比较抽象的、而且逻辑性较强的课程,如果没有动力和积极性去研究,非常不容易把握。而且从高中数学跨越到大学数学,跨度较大,在一开始的学习中感到非常不适应。另外,大学数学的自主学习能力要求较高,突然脱离了传统的学习模式,导致我们有点手忙脚乱,抓不着重点。在从高中数学到大学数学的跨越中,我们首先要看到两者之间的差异,进而采取有效的措施衔接两者,使我们在大学数学的学习中能很好的从高中数学的学习模式中过渡过来。
一、学习过程中大学数学与高中数学存在的主要差异
(一)高中数学与大学数学在教学目标上存在的差异所以多数时候就是运用题海战术应付考试取得满意的结果,高中数学比较淡化对体系的认知。而大学数学老师是培养学生的综合运用能力,通过对数学基础知识的学习,是我们学生了解高数的思想,用科学的方法应对实际中的问题,并探索创新能力,同时大学数学很重要的一点是培养学生的自学能力。
(二)高中数学与大学数学在教学方法上存在的差异高中数学在学习进度保证的同时赶超的是知识点的掌握程度。进度相对来说比较慢,主要是通过课堂高密度提问和细致的分析,反复对知识点进行训练,将知识点渗透到学生的.理解中,并且在高中数学中老师是有足够的时间去辅导学生练习的。而大学数学,课程进度就相当得快,而且课堂的知识容量非常大,学生并不能当堂就消化掉所有的东西,大学数学更注重的是概念的理解和实际的运动,比较侧重于学生的自主学习能力,在认识数学理念的同时,引导学生自主的思考问题并运用到实际中解决问题。
(三)高中数学与大学数学在教学模式上存在的差异高中数学,教师处于主导地位,学生处于被动地位。就是老师教什么学生学什么,他注重的是知识的传授和对学生知识掌握的训练。而大学数学注重的是知识产生的过程,在大学数学的教学中,学生处于主导地位,教师只是引导。通过教师的引导,自主学习和探讨,激发学生学习的积极性和创造力。
(四)高中数学与大学数学在知识结构上存在的差异近代数学思想渗透在高中数学中,如函数、集合、概率等,广度深度上比较浅显。而且高中数学重视的是理论的推导,概念内涵不够深。而大学数学,理论性比较强,内容比较抽象,而且数学符号大量出现,学生接受起来比较困难。
二、找到大学数学与高中数学的衔接之处
(一)发现大学数学与高中数学教学内容的衔接之处
首先要精简两者重复的内容,有些知识既出现在高中数学中,也出现在大学数学中,作为这一部分就需要精简知识,我们在学习的时候就要做对此部分知识的筛选。其次就是要补充高中数学删除或涉及较浅的内容,有一些大学数学中的知识在高中数学中略被提及,讲解较浅,或者直接被删除放出,作为这一部分知识,我们就要作为大学数学的必备知识抓起来,这样才能避免知识的脱节。两者相互结合才能加强对整个数学知识的了解,才不至于阻碍后面知识的深入。再次就是要加强所学知识的应用型。大学数学讲究的是能活学活用,学到的知识能与生活实际联系起来,高中数学的知识就如我们身边的必备工具一样,我们结合两者的长处在生活中加以运用,激发我们对于数学的学习兴趣。
(二)寻找大学数学与高中数学数学思想与学习方法的衔接之处
高中数学引导学生利用所学知识解决问题,让学生逐渐建立科学的数学思想方法提高学生的数学思维能力。大学数学是高中数序的深层次教育,就要利用现代的思想和方法引导传统知识,加强现在数学意识的渗透。在实际教学过程中关注当代数学研究的前沿问题将其渗透到数学知识的应用中,安排开放性问题供学生业余进行探究。在高中数学中多媒体技术已经开始使用,高中数学知识已经变得比较直观生动,非常有利于学生掌握和理解知识。
三、做好大学数学与高中数学学习方法转换的方法
(一)大学数学学习要注重课程的课前预习
上课知识量大,涉及面广以及理论性强是众所周知的大学数学的特点,并且内同极具抽象性和严谨性,所以要在课堂上很好的消化知识就要做适当的课前预习。只有课前预习,才能知晓自己的疑问,带着问题上课,能够有针对性的解决自己的问题,效率大大提高。
(二)做好大学数学的课堂听课笔记
将老师在课堂上所讲解的重点难点记录下来,课后好好钻研,随时回顾,提高学习主动性。
(三)课后善于归纳和总结
大学数序知识每节之间都是紧密相连层层递进的,我们只有做好归纳总结,才能将知识出阿联,形成完整知识构架和体系。
(四)善于提出自己的问题
对大学数序的学习要善于思考,善于提问,用已有的知识,自己去发现解决新问题,或者在原有的基础上领悟一个新道理,从而产生新的思维,培养创新精神和意识。
高中数学和大学数学共同承担着构架数学知识体系的重担,二者缺一不可,密不可分。两者的有效衔接才能发挥更大功效。通过对大学和高中数学之间的差异以及衔接之处的简要分析,从教学内容和教学思想两个方面提出高中数学和大学数学教学衔接的应对策略期望,对于提高我们的大学数学学习效果起着重要的作用。
歌颂党的作文800字10
一、高中数学快速提分的方式
1、背概念、公式、定理、图像
如果你现在是三四十分的话,你第一件事就是要背上面的这些,现在跟着老师走一轮,那么要把老师提到过的每一个概念,公式定理与图像都背下来,刚开始会很辛苦,毕竟高中数学的一些概念还是比较抽象的,但是小数老师告诉你,你背一段时间后,你会有很明显的变化的!
要求:每个概念公式定理图像都要背下来哦,你可以找你同桌提问你,比如,提问函数,你要知道函数的概念,函数的相关性质都有哪些,这些性质的概念又是什么等。现在你可以不理解,但必须滚瓜烂熟!
注:这是最痛苦的一个阶段哦,加油!
2、背例题老师上课会讲一些例题,那第二步就是要把这个例题背下来,包括题目条件,求解与解法。
达标要求:你能合上课本,自己写出题目条件与求解,并能默写出步骤来!要找到题目中的关键词,也就是题眼,也就是你之前背的概念公式定理图像中的出现的那些词,这才是题眼!因为解题的时候,我们的解题思路从哪来,就是从我们学过的知识转化过来的!
注:这一步相对上一步来说,简单了一点,因为题目是具体的,不抽象,背起来稍微容易一点!但是要注意抓住重点,那就是例题中的题眼!不要只记里面的数字啊,否则,数字换一下,你就不会做了!
3、对例题的每一步转化写上来龙去脉
例题背下来之后,你也能分辨出题目的题眼了,也会了解题步骤了,接下来就要调动你的大脑来思考了!你要把每一步涉及到的公式概念都写出来,比如:求函数的定义域,你记过求定义域的方法,那让你求的定义域时,首先是二次根号下被开放式必须大于等于0,所以有lgx大于等于0,又因为这是一个对数函数,想一想对数函数的图象,找到函数值大于等于0对应的x值就是此函数的.定义域了!
要求:每一步都要弄清楚,你不知道转化的,一定要问,此时可以不计较数量,重视质量就可以了!这个质量是你自己真正能写出来了!
注:数学题逻辑思维比较强,一定要分析每一步,不要感觉自己会了,就不写了!
4、重新做例题(不是把答案背上去哦)
你弄明白之后,接下来就是要真正把他当做一道新题去做了,你完全按照做新题的方法,审题,找到题眼,然后想一想这些题眼该怎么转化,以前自己学过的知识怎么运用,不同知识之间怎么结合,然后一步步的去做这道题,在做题的过程中,还要注意计算的易错点!
二、巩固数学基础的方式
首先课堂紧跟老师,认真听每一节课,记好课堂笔记,有些学生喜欢自己课后自学,课堂不爱听讲,这是极错误的,因为老师对于高考的了解和对知识的掌握,远远胜过我们自学,紧跟老师是打好基础最关键的一步。
对课本基础知识的学习,我们强烈建议大家使用思维导图,可以把课本上的知识都画成树状层,这样更容易理解、记忆,这样知识点不再是孤立而是成了一个网,这比光看书效果要好很多很多。
此外,想学好数学,大量刷题确实很有必要,但你真的会刷题吗?多数同学虽然也做了大量的题目,但成绩还是不好,核心原因就是做题忽略了最重要的一步,那就是总结反思。每做完一道题目,大家还需要总结一下,问一下自己下面这些问题:它考查了哪些知识、自己有没有掌握、题目的解题思路在哪里、突破口是什么、属于哪种题型、此类题型有什么共同的套路、此类题型应该用什么方法来解答。只有多问自己几个为什么,你才能真正吃透一道题,达到做一道题会一类题。
做题并不是越多越好,要知道题海战术只是手段,我们最终的目的还是通过做题加深对知识的理解,掌握解题套路,提高做题速度,如果做题不总结,你刷再多题效果也不会明显。
歌颂党的作文800字11
高中快速提高数学成绩的方法
1、基础知识整理
对于基本概念,基本公式,要熟记于心,然后是揣摩总结各知识点之间的关系,形成自己对于知识的理解,在心中形成自己的知识脉络,理清基础知识间的联系。
2、扎实练习基础知识
练习是必不可少的,但是一定得从基础,从课本开始,课本的练习以及例题是练习的根本,在最开始时一定得将基础练习做好!甚至需要将课本中的例题和练习举一反三!这样才能实现对基础知识的巩固!
3,专攻知识遗漏,专项练习提高成绩
专项练习的目的在于提高,在于清理知识的遗漏,对于经常做也不会的或者也出错的知识,那么不妨花费一段时间来专项突破,这个方法对于提高成绩还是非常快速的。
4,综合提高高一知识掌握
对于成绩的提高必然是对于全套试题的把握,当基础练好,专项练透,综合试卷必然是必须过关的,综合试卷是对做题者的综合能力的考察,通过练习把做题时间,难易分配,即时思维,临危克难等限时条件下做题效率提高!
提高工作数学成绩的方法
第一、吃苦。学习是孩子自己的事情,别人帮不了你。而且学习本身就是一个很苦的事情,所以,要自己做好吃苦的准备,刻苦钻研,每天努力。
第二、精读教材。现在很多孩子学习成绩不理想,有一个很大部分的原因,就是他自己连教材是什么样子的,都没有认真看过。学校老师,可能上课也是用的导学案,然后孩子课前也没有预习,课后也没有认真的精读教材,进行内容消化。
第三、上课专心听讲,和课后整理笔记。这点有多重要,就不多讲了。为了提高上课效率,课前一定要认真的预习功课。课堂上,不要猛抄笔记,错过老师的解题思路和总结,就得不偿失。笔记是都是课后再去整理和总结的。
第四、独立做题,勤于思考。做题一定要独立完成,不要依赖别人,不要依赖搜题软件。可以翻书,找例题。要轻语思考和总结,把类似的相关题型,归纳总结起来。
第五、不遗留问题。每天遇见的问题,一定要想办法解决,多请教同学和老师,要多问几个为什么,多和同学交流学习上的想法,有自己的观点和分歧的时候,要勇于表达。
高中数学成绩提升的方法
1。平时练习不要翻书
为什么有的孩子在平时完成作业时能够完成得很好,但是到了考试的时候成绩就会比较不理想?这就是因为平时回家练习的时候翻书了。做题的时候翻书会导致我们对一些知识点掌握不牢固,比如一些概念和定义等内容。长此以往,我们就没办法通过作业了解我们有那些知识点没有掌握好,这样自然就没有好成绩了。
2。学会整理错题
错题本是学生在学习的过程中,把自己做过的考试题、模拟题及其他习题中的错题整理成册,便于自我发现薄弱环节,进而进行针对训练以提升成绩的学习工具。所以学会整理错题很重要。那么该怎么整理错题呢?
(1)要分别类整理
将所有错题整理,分请错误的原因。如:概念模糊类、审题错误类、记忆错误、理解错误、计算错误等,将各题注明属于某一章某一节。这样分类便于按原因查找原因,给今后复习带来方便。
(2)不要只记错题
我们在记错题的时候,不光要记错题,还要写下自己错误的原因,已经正确的解题过程及答案。对于部分题型,我们还可以记下不一样的解题思路。
(3)举一反三
类似的.题目,可以摘写在旁边,将解题思路写清楚。拓展延伸,将其难度延伸的题目也要摘写下来,好相互比较一下。这样达到具举一反三,触类旁通的效果。
3。学会整理学习资料
在学习过程中,老师会发很多单页的学习资料,这些资料大多数都是老师们针对一个单元中易错的问题内容等做的整理。还有一些其他的学习资料,都是容易损坏、遗失的。如果没有一个整理学习资料的习惯,那么这些学习资料到了复习的时候就找不到了,平时养成整理资料的习惯,到了初高中以后,面对更多的学习资料,会有很大帮助。
培养习惯是个长期的过程,一个好习惯的养成,往往需要漫长的时间。由于人们往往具有惰性,在一段时间的训练之后,如果稍加放松,孩子就会出现反复。但是好的学习习惯能够帮助孩子更好地学习,所以家长们一定要督促孩子养成好的学习习惯。
歌颂党的作文800字12
解析近年高考数学卷压轴题
高考数学压轴题的命题有些来自于课本例题和习题的改编,有些来自于某些高等数学内容的简单化结论,有些来自于竞赛试题等。作为准备在高考中拿高分的应试者,不可能去研究高等数学或竞赛试题,最好的素材就是过去高考的压轴题。但是要全面地看,并且做分类,包括题型的分类和解法的分类。当然,还要重点研究本地区高考数学命题的趋势和方向,尤其是自主命题的地区,往往本地的命题特色比较突出。随着高考改革的推进,全国卷的使用率越来越高。我们也要与时俱进,研究全国卷新的变化趋势,这就是学霸分享的数学突破130分的技巧之一。
培养逻辑思维
学霸分享的数学突破130分的技巧之二,是要严格遵守思维规律,所写出来的步骤和推理必须要有步骤,这就是逻辑思维的核心。对平时考试中或者做练习时产生的一些错误点,一定要正视起来,一定要严格对待,不能马虎,才能有效的培养出自己严谨求实的思维习惯。我们还要对如何使用概念、定义和定理、公式有一个了解,对知识的获取过程要重视起来,能够培养抽象、概括、分析综合、推理证明的能力,如果我们不加以重视的'话,相当于失去了一次从中吸取经验、锻炼和发展逻辑思维能力的机会。
认真的态度
学霸分享的数学突破130分的技巧之三,数学是一门治学严谨的学科,所以学生们在做题的时候一定要养成认真审题、仔细分析的好习惯,要看听题,看懂题,不要因为自己的粗心而丢失了本来应该得到的分数。高考数学复习大多都是已经学过的知识,所以难免会有些枯燥乏味,学生们一定要提高思想觉悟,主动的进行复习,提高复习的积极性,这样才能取得好成绩。
歌颂党的作文800字13
高中数学学习方法指导
数学学习方法很多,有从过程上讲的学习方法,也有从教学内容上讲的学习方法,根据新课程新理念,我着重从学习的情感态度方法;思想上能力上与大家共同交流共同进步。
一 数学学习情感态度
数学已成为公民所必须具备的一种基本素质。数学在人类思维的过程中发挥着独特的、不可替代的作用。有人这样形容数学:“数学是思维的体操,智慧的火花”。数学使人聪明,严谨;我们需要数学,我们欣赏数学。但很多同学进入高中阶段,对数学学习很不适应,成绩下降,很重要的一点是不能很快改变旧的思维方法和学习方法,去适应新阶段的学习。大部分同学形成了固定的学习方法和学习习惯,他们上课注意听讲,尽力完成老师布置的作业。但课堂上仅仅满足于听,缺乏积极思维;遇到难题不是动脑子思考,而是希望老师讲解整个解题过程;不会科学地安排时间,缺乏自学的能力,还有人问有没有一种神奇的学习方法,让我们一看就懂,一学就会。大科学家爱因斯坦的两句话,给了很好的回答:w(成功)=x(刻苦努力)+y(方法正确)+z(不说空话)。 “兴趣是最好的老师。”也就是说爱数学,是学好数学的前提条件。
(一)兴趣是最好的老师
兴趣是能量的调节者,它的加入便发动了储蓄在内心的力量。据研究,如果一个学生对学习有兴趣,积极性高,就能发挥其全部才能的80%-90%;否则只能发挥20%-30%。兴趣能把精力集中到一点,其力量好比炸药,立即把障碍炸得干干净净。兴趣是获取高效率学习方法的关键。也就是说学习的感情、态度是影响学习最关键的因素。对其所学习的知识具有浓厚的兴趣,极大的热情,并有一种我必须学好或学会这些知识和技能的决心,那么他在这种心里的驱使下将会不分昼夜,锲而不舍,直到掌握这些知识和技能,使其心理得到满意为止。也使他的学习更有成效。
(二)数学是重要的,必须面对的
可能有的同学会说:我可能对学习数学不十分感兴趣,而是由于无可奈何的原因去学习的,而我也不可能会为不感兴趣的东西去探索什么学习方法。其实这种态度是错误的。"数学是一切科学之母"、它是一门研究数与形的科学,它无处不在。要掌握技术,先要学好数学,想攀登科学的高峰,更要学好数学。一个人在人生中肯定有他最感兴趣的东西。但是为了让自己过得满意,他必须将他一生中不感兴趣而又必须学习的东西尽快学会,尽可能高效的学会。这样他才会有更多时间从事感兴趣的事情。所以对不太感受兴趣的东西但又必须学习的东西,我们也应该去探索让人满意的方式和方法给予解决,以争取早日脱离"苦海",尽快进入兴趣的海洋尽情遨游。
(三)数学是有趣的,美丽的 激动人心的
数学是自然的,不要害怕,如果听懂一节课,掌握一种数学方法,解出一道数学难题,测验得到好成绩,平时老师对自己的鼓励与赞赏等,都能使自己从这些"成功"中体验到成功的喜悦,激发起更高的学习热情。因此,在平时学习中,要多体会、多总结,不断从成功(那怕是微不足道的成绩)中获得愉悦,从而激发学习的热情,提高学习的兴趣。
数学是美的,有趣的,激动人心的。要被数学本身的魅力所吸引;就如美味佳肴,凭它的色香味,使人油然升起强烈的向往。这才是学好数学的正道。
二 、数学学习的科学理念与方法
1理解 2参与 3 探究 4总结
(一)理解-----学好数学的关键
数学知识点不是孤立的,而是紧密联系的。互相联系在一起若干个数学知识点称为数学知识结构。数学学习就是在自己的头脑中不断建构和完善的数学知识结构的过程。数学学习的过程本质上讲就是理解数学知识及其联系的过程。理解是数学学习的核心。数学学习一定要把理解放在第一位,千方百计提高理解的层次。
有这样一种现象,有些同学表现在上课都听懂,作业不会做;或即使做出来,老师批改后才知道有多处错误,这种现象被戏称为“一听就懂,一看就会,一做就错”。其实质就是对知识的一知半解。是表面孤立和肤浅的理解,是一种夹生饭。那么怎样才算真正的理解呢?
1、数学知识的理解要深入本质,注意抓住知识之间的联系
字面上的理解仅是第一层次,还必须弄清它和它以外事物的关联,本质上融会贯通。从系统的角度去分析认识它们了。如对数学概念要理解其形成过程,表示方法(文字语言,符号语言,图形语言)要熟悉。重要的是理解它与其它概念的区别和联系。
2、了解知识产生的.背景和作用
通过知识的产生背景,理解知识的形成过程,掌握知识来龙去脉;培养观察思考抽象概括提高问题与解决问题能力,增强数学应用意识。
例1:如函数的概念,认真理解符号f对应关系;可能是一个表达式,也可能是一个表格或图像;从熟悉的实例背景出发;如圆周长??2??,其对应规律,周长是半径的2?倍。珠海西区站数与票价关系是分段函数或表格式;气温与时间关系只能用列表或图象表示。通过实例,必须到抽象的概念符号。函数是什么?函数是两个变量间的对应规律。包含定义域,对应规律,值域三要素。f(x)中x表示自变量,f表示变量变化规律。f(x)=3x+5易求
f(5),f(2m-1),f[g(x)]
例2:联系的观点学概念理解概念:棱柱 棱锥 棱台三种图形,可从其中任意一种出发,运用动的思想,演出其它两种。
例3:数列、一次函数、解析几何中的直线几个概念都可以用函数(特殊的对应)的概念来统一。又比如,数、方程、不等式、数列几个概念也都可以统一到函数概念。要学习好数学,必须准确理解和掌握好基本概念、基本公式和基本性质,抓住这些基本知识的要点和适用范围,这是学好数学的基础之一,否则一切都无从谈起,从目前的高考看,也很侧重对这些基础知识的考查,特别是一些简答题,如果对某些基本概念不能准确理解则很难正确作答。
(二)主动参与
参与数学活动又分为被动参与主动参与两种形态。有的同学习惯于“以听为主,力求听懂”跟在老师后边亦步亦趋;虽然参与但力度有限思维的创造性受到限制,学习是被动的。而应该把老师讲解作为一个因素,独立思考,主动思考,创造性地进行思维。力求自己解决。这种强烈的自主意识调动了积极性,所获得的感悟要丰富得多,深刻得多。主动参与要做到几点。
1、 学会读数学书
学会看目录:预习时先学目录和内容提要,了解知识的大致内容,然后再开始从头学习各个组成部分,并在学习过程中要求自己把书本读"厚",读完后他以要求自己把书本读"薄"。厚使他对书本的各个部分有了详细的了解,薄使他对书本的整体和主旨有了更深刻的认识。课本从预习到复习至少要仔仔细细地看4-5遍,基础差的更要多看。预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习还可以培养自己的自学能力。强调几点
例题要重读:教材中的例题,是学习如何运用概念定理公式最一般的示范。阅读时要作为重点。读时要边看边想边算,可先试着算算不出来,再看解答。这对提高解题能力大有益处。
概念要精读:正确理解和使用概念,是学好数学的前提。阅读概念时一定要一字一句地仔细阅读,把每一个字、每一个词都要弄明白。精读的精字,可以从两层意思来理解:一是阅读的时候要精细,要非常认真仔细;二是总结的时候要精炼,不能啰嗦。力求把内容吃透。看书过程中应不断向自己发问,多想想为什么。加深对概念定理的理解。
要点应巧读:所谓巧读,包括以下几层意思。第一,学会点、划、批、问。把关键的地方都“点”出来,把重点、公式和结论都“划”出来,把自己的理解、质疑和心得等用三言两语“批”出来,把没弄懂的地方都用问号“问”出来。第二,跳过障碍,先看下去。对一时看不懂的地方,不妨先跳过去,或许读过后来的叙述,前面不懂的也就懂了。第三,不同的书比较着看。某一处不太明白,不妨看看别的参考书是怎么说的。各种书的叙述语言有深有浅,叙述角度有正有反,有时这么对比着一看,往往也就明白了七八分。
2、学会上课---积极主动参与到课堂中来
课堂上要做到三点:一要专心听讲:听能使注意力集中,把老师讲的关键性部分听懂、听会,听的时候注意思考、分析问题,但是光听不记,或光记不听必然顾此失彼,课堂效益低下,因此应适当地笔记,领会课上老师的主要精神与意图,知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法.积极思考问题。弄清讲的内容是什么?怎么分析?理由是什么?采用什么方法?还有什么疑问?只有这样,才可能对教学内容有所理解。
3、 超前思维:一个概念要能从它的生活背景中提出来,自己能试着定义它,知道三种语言(文字语言符号或图形语言)表示方式,一个命题定理、公式性质写出来,先试着去证明,例题试着分析,尽量超在老师讲解前发现思路,做出结果解出它;学习过程中自己设想该得出什么结论了,下什么定义了。总之老师提问后,尽量超在老师讲解前想出解决问题的途径和方法.让自己的思维走在老师的前面。这样的结果,名词,定理公式是自己定义推导出来的,自己概括数学概念、原理、法则等。身临其境,理解就相当深刻,掌握就牢固,保持高水平的数学思维活动,是在游泳中学习游泳。
4、学会提问:“提出一个问题往往比解决一个问题更重要。”因为解决一个问题,所应用的知识是前人总结的,所需要的技能也是前人积累的,在解决问题的过程中有很深的模仿痕迹。而提出新的问题,却需要有创造性,有想象力。在老师讲解前,发现问题如一题多解,提出问题的变式创新推广 ,培养学生的创新精神和实践能力。
总之:听课时要耳到、眼到、心到、口到、手到;动脑、动笔、动口,全身心地投入课堂学习,参与知识的形成过程,若能做到上述“五到”,精力高度集中,课堂所学的一切重要内容便会在自己头脑中留下深刻的印象。
(三)学会记忆:记忆方法很多,年轻人要多记,只有记更多的知识,才会左右逢源,一呼百应,得心应手。如等差数列求和公式有部分同学到现在记不了,可类比梯形求面积的方法发现规律,简化记忆。
例图形法如y=ax (a>0,a≠1) ,a>0,以1为分类界点,当a>1时,函数呈上升状态,当a<1时,函数呈下降状态,由图记性质易如反掌。此外还有口诀法记 如2=1.41421可记为:意1思4意1思4而2已1
直线分平面区域可记为:直线定界,点定域;三角公式:此外还有列表法联想法等。
三、反思探究
勤于思考,善于思考,是对我们学习数学提出的最基本的要求。一般来说,探究要从以下几方面探究思考。要尽力做到以下几点。
1、错题疑难探究:.建立纠错本或《备忘录》:把平时容易出现错误的知识或推理记载下来,争取做到找错、析错、改错、防错。整理易错的题。你需要一个笔记本将做错的题定期整理,定期复习,除了典型例题,还需要重视自己出错的题目。错题大约可以分两种:一种是自己根本不会做,因为太难了,没有思路;另一种是自己会做,因为粗心而做错。我觉得,最有价值的错题是第二类。因为粗心也有许多种,我们也要分析它。为什么会错?有哪些经教训?下一阶段怎样学?
2、问题解决探究:善于发现问题和提出问题,善于解决生活中的实际问题。
3、同学交流合作探究:探讨有关知识的重点、难点和一些容易混淆的问题。互相测评,相互交换出好的试卷,然后答题。进行批改计分。然后大家一起针对错题进行研究分析,找出原因。分工组合共同探究某一数学实际问题;培养合作探究交流的能力。
4、 注意应用会写学案、会写小论文。
教师教学要认真备课,写教案,学生学习也可写学案;通过写学案培养自学能力。,通过学会写小论文,培养创新意识。此外积极参与一切有益的学习实践活动,如数学竞赛、智力竞赛等活动。
例如1:求过点(0,1)而且与抛物线y2 =2x只有一个公共点的直线方程?
一部分同学解成:设过点(0,1)的直线方程y=kx+1,联立列方程组得 K=1 所求的直线方程是Y= X+1反思错误:是不是只有一条这样的直线呢?这些同学就会独立思考,自己去发现问题,忽视了直线斜率不存在的这种情况;应包括K=0的情况。
例如2: 数列求和方法探究:直接求和法, 转化求和法,sn?11111?2?3?...?n?n; sn?a2?2a4?3a6?...?na2n 2482
sn?1?22?32?42?52?62?...?n2?(n?1)2;裂项求和法,
自然数方幂公式求和
四、总结提高
(一)及时复习,做好一个单元学习与小结方法
第一步深入理解它的各个概念,定理公式,并初步归纳,比较,编织系统;站在新的高度,完善原来的系统。第二步,结合题目,归纳它们的应用;总结解题思考方法。解包含更大范围知识的综合题,提高应用水平,归纳解题思考方法。
(二)善于总结数学思想与方法和解题规律
学好高中数学,需要我们从数学方法与思想高度来掌握它。善于总结应用数学方法,如:换元法、待定系数、观察与实验,联想与类比,比较与分类,分析与综合,一般与特殊,抽象与概括等。数学思想是指处理数学问题时的观点。它是一些哲理性观点在数学中的体现如:分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。解题方法上经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质,总结解题规律。
(三)学会做数学题
做习题,是学好数学的必要过程,也是培养能力,发展素质的重要环节。解答习题的过程,既检查了数学概念,定理公式的理解是否准确,又加深它们的理解和掌握;做题不是为了做出答案,而是达到更深的理解数学知识;训练应用知识的能力。面对习题需要观察它的特点,进行分析,作出判断。要想学好数学,多做多想是必要的。怎样做题呢?
要打赢一场战役,不可能只是勇猛冲杀、一不怕死二不怕苦就可以打赢的,必须制订好事关全局的战术和策略问题。解数学题时,要注意三点:
1、题不在多,但求精彩:过少不好,过多也无必要。这有点像吃饭,吃不饱不好,但过饱会引起肠胃功能紊乱,连开始吃进去的东西都不能消化;同时营养价值很低的食物吃很多,不如吃适量高营养的食物。选题本身应无错误,复述性少选,要选综合性强,充满活力的题,有代表性题,不选对理解无价值无一般性的偏题怪题。
2、讲究做题方法:
(1)一题多解,一题多变, 多解归一。解题时举一反三,善于发现,有所进步。
(2)掌握分析法和综合法去分析题:在解题过程中很多同学因为找不到思路常常无从下笔注意解题思维策略问题,综合法是将已知条件列出来,看看能推出哪些结论,而这些结论又可以看作条件,再看看这些新的条件又能导出哪些新的结论;待逐渐熟练之后,往往能够一眼就看中问题的关键,迅速找到突破口。
分析法是从你要求的结果或需要证明的问题出发,看看需要哪些条件才能得出所要的结果,而要得到这些条件,又需要哪些更多的条件。
3、掌握解题的四步骤:
1)审题:首先应判断问题属哪一类,分清题目的条件和要求,已知是什么?未知是什么?条件是什么?结论是什么?从题目中还能挖掘出什么隐含条件?画个草图,引入适当的符号。目前所面临的主要困难是什么?解题的前景如何?
2)寻找解题途径:方法有三种; 一种是由因导果综合法;表述为“已知—可知—可知······最后达到结论。第二种执果索因分析法;即结论—需知—需知—······“这样层层追到已知条件全部有了为止。条件与结论之路打通了。第三种复 的题需要两种方法两头挤。解题过程中要广泛联想,能联想起有关的定理或公式?在进入解决的过程中随时要根据情况的发展或作调整,或修正原来的方向。
3)准确表达:实现计划 实现你的解题计划并检验每一步骤。运算要求准快简辟便。证明你的每一步都是正确的。
4)总结回顾拓广: 检查结果并检验其正确性。换一个方法做做这道题。尝试把你的结果和方法用到其他问题上。注意反思提高综合解题能力。
例1:多变题:求数列的一个通项公式:
1)1,3,5,。。。。 an=2n-1 (n?N)
2)1,-3,5,-7,9。。。。 an?(2n?1)(?1)n?1,(n?N)
1?(?1)n?1
(2n?1) 3)1,0,5,0,9,。。。。出现1,-1,an?2
例2:已知an是等比数列,an>0,a2a4+2a3a5+a4a6=25,那么a3+a5的值等于( A )(高考题)
A5,B10 ,C15,D20 综合法解:由已知推出未知选A
数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;日积月累,定有可观的进步;我们知道一条好的创业理念能挽救一个工厂,发展一个企业。同样一条好的学习理念,能使一个学习受挫的同学从此走向成功。通过讲座希望同学们在今后的学习中,掌握科学的学习方法,争取更大的进步,取得辉煌的成绩。
歌颂党的作文800字14
高中数学学习是中学阶段承前启后的关键时期,不少学生升入高中后,能否适应高中数学的学习,是摆在高中新生面前的一个亟待解决的问题,除了学习环境、教学内容和教学因素等外部因素外,同学们应该转变观念、提高认识和改进学法,本文就此问题谈点看法。
1、认识高中数学的特点。
高中数学是初中数学的提高和深化,初中数学在教材表达上采用形象通俗的语言,研究对象多是常量,侧重于定量计算和形象思维,而高中数学语言表达抽象.
2、要提高自我调控的“适教”能力。
一般来说,教师经过一段时间的教学实践后,因自身对教学过程的不同理解和知识结构、思维特点、个性倾向、能力品质、教学观念、职业经历等原因,在教学方式、方法、策略的采用上表现出一定的倾向性,形成自己独特的、鲜明的、一贯的教学风格或特点。作为一名学生,让老师去适应自己显然不现实,我们应该根据教的特点,从适应教的目的出发,立足于自身的实际,优化学习策略,调控自己的学习行为,使自己的学法逐步适应老师的教法,从而使自己学得好、学得快。
3、正确对待学习中遇到的新困难和新问题。
在开始学习高中数学的过程中,肯定会遇到不少困难和问题,同学们要有克服困难的勇气和信心,胜不骄,败不馁,有一种“初生牛犊不怕虎”的精神,愈挫愈勇,千万不能让问题堆积,形成恶性循环,而是要在老师的引导下,寻求解决问题的办法,培养分析问题和解决问题的能力。
4、要将“以老师为中心”转变为“以自己为主体,老师为主导”的学习模式。
数学不是靠老师教会的,而是在老师引导下,靠自己主动思维活动去获取的,学习数学就是要积极主动地参与教学过程,并经常发现和提出问题,而不能依着老师的惯性运转,被动地接受所学知识和方法。
5、要养成良好的预习习惯,提高自学能力。
课前预习而“生疑”,“带疑”听课而“感疑”,通过老师的'点拨、讲解而“悟疑”、“解疑”,从而提高课堂听课效果。
6、要养成良好的审题和解题习惯,提高阅读能力。
审题是解题的关键,数学题是由文字语言、符号语言和图形语言构成的,拿到目要“宁停三分”,“不抢一秒”,要在已有知识和解题经验基础上,译字逐句仔细审题,细心推敲,切忌题意不清,仓促上阵,审数学题有时须对题意逐句“翻译”,将隐含条件转化为明显条件;有时需联系题设与结论,前后呼应挖掘构建题设与目标的桥梁,寻找突破点,从而形成解题思路。
7、要养成良好的演算、验算习惯,提高运算能力。
学习数学离不开运算,初中老师往往一步一步在黑板上演算,因时间有限,运算量大,高中老师常把计算留给学生,这就要同学们多动脑,勤动手,不仅能笔算,而且也能口算和心算,对复杂运算,要有耐心,掌握算理,注重简便方法。解后要反思,提高分析问题的能力。解完题目之后,要不失时机地回顾:解题过程中是如何分析联想探索出解题途径的?使问题获得解决的关键是什么?在解决问题的过程中遇到了哪些困难?又是怎样克服的?这样,通过解题后的回顾与反思,就有利于发现解题的关键所在,并从中提炼出数学思想和方法,只有勤反思,才能“站得高山,看得远,驾驭全局”,才能提高自己分析问题的能力。
8、要善于交流,提高表达能力,养成纠错订正的习惯。
在数学学习过程中,对一些典型问题,同学们应善于合作,各抒己见,互相讨论,取人之长,补己之短,也可主动与老师交流,说出自己的见解和看法,在老师的点拨中,他的思想方法会对你产生潜移默化的影响。因此,只有不断交流,才能相互促进、共同发展,提高表达能力。如果固步自封,就会造成钻牛角尖,浪费不必要的时间。
9、要勤学善思,提高创新能力。
“学而不思则罔,思而不学则贻”。在学习数学的过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,进行独立思考,注重新旧知识的内在联系,把握概念的内涵和外延,做到一题多解,一题多变,不满足于现成的思路和结论,善于从多侧面、多方位思考问题,挖掘问题的实质,勇于发表自己的独特见解。因为只有思索才能生疑解疑,只有思索才能透彻明悟。一个人如果长期处于无问题状态,就说明他思考不够,学业也就提高不了。
10、要养成做笔记的习惯,提高理解力。
为了加深对内容的理解和掌握,老师补充内容和方法很多,如果不做笔记,一旦遗忘,无从复习巩固,何况在做笔记和整理过程中,自己参与教学活动,加强了学习主动性和学习兴趣,从而提高了自己的理解力,也养成归纳总结的习惯。
总之,要养成良好的学习习惯,勤奋的学习态度,科学的学习方法,充分发挥自身的主体作用,不仅学会,而且会学,只有这样,才能取得事半功倍之效。
歌颂党的作文800字15
高中的学习生活其实不只是要努力,正确的学习方法在学习生活中起着很大的作用。现在我就高中的学习方法给你做些介绍啊,希望对你的学习生活有所作用!我知道你数学不是很好,所以呢,我着重数学。
你们女生老是说高中数学难,其实是那么回事吗?在高考中,数学只有二十一题,选择和填空有十五题,然后再六个大题。所以在高中你只有学会这二十一题就行。
在试卷的第一题你会碰到虚数的有关内容,虚数无非是虚数有理化,实部和虚部,注意实部和虚部都是数哦!之所以这个虚放在第一题就是要你拿到那个五分,一定不要客气哦!在试卷的第二题你将会看到简单逻辑连接词的有关试题,其实这一部分的题目还是比较简单的了,只要掌握了课本上的就足够了。关于前面的两题我就不想多讲了。还有集合内容我也觉得不是高考的重点。至于统计我也就不详细的说了,我所讲的是三角函数与解三角形,函数与导数,立体几何,解析几何,数列,向量。
一:三角函数与解三角形
这个知识点考的还是比较多的,大概有17分。
1、你需要掌握正余弦,正切的图像,及其的有关图像变化。在高考中的图像题可能就是
这方面的。关于图像的上下平移,左右平移,图像的性质。三角函数是个周期函数,这在学习的过程中可能要花不少时间,其实当你不清楚的时候就画画图像,在图像上找到你所要的东西,当然你也要学会求它的周期,这些你都要熟练掌握。其实三角函数的图像无非是关于图形的变换,只要有耐心和一定的基本功,这部分的题目解决来不是什么难事!
2、三角函数的诱导公式,正余弦的和差展开式,二倍角公式,半角公式。这一部分内容
除了必要的练习还要有效的记忆。其中诱导公式是比较多的,你可以先集中记忆,然后在练习中加以巩固,达到熟练的目的。注意,你要找到这些公式的异同点找到自己的方法记忆。比如在做题的时候你看到了平方那么你的第一感觉就是看看能不能用半角公式,从半角公式形式上看它比较适合降次。多找找这样的特点有助于你记忆和应用。
3、快速有效的掌握AB形式。在高考中,这样的题型有着很大的分量。你要做的就是在
什么时候要用这种形式和又好又快的解决这类问题。这种形式我们不难发现它必须是在同角的时候才可以用,至于熟练运用就要靠你平时的努力了!
4、解三角形。这一块要熟练得掌握正余弦定理。无论是正弦还是余弦都必须知道三角形
的三个条件,注意有时我们用正弦的时候发现有两个值,那么一定要注意是不是要舍去一个啊,要经常用大角对大边的定理进行检验。
二:函数与导数
1、基本初等函数。包括一次,二次,指数,对数等函数。对于二次函数的题目我们要注
意的是四要素:开口方向,对称轴,截距,根的分布。在习题中你要时常考虑这四个因素,要寻找到题目中的隐藏条件,大多的题目至少有一个隐藏条件,找到以后你就可以化繁为简。还有,不要怕分类讨论,其实分类讨论只要部遗漏部重复就行,不用太在意那个,难的分类讨论并不是每个人都会。指数函数你要知道它的图像和性质,比如a的范围啊,单调性,值域啊。对数函数和指数函数有共同点,只要掌握了两种图像你就可以掌握他们了。还有,对于基本初等函数的基本运算你还是要多加练习的,比如指数函数和对数函数的几个运算公式你一定要熟练掌握,这是你解决复杂题目的基础。
2、导数的运用。导函数和原函数要能够区别,首先你要明确导函数是用来干嘛的,导函
数就是用来研究原函数的单调性的一种方式,不能将二者混淆。大部分的导数运用最终都会转化到二次函数上去,所以在有空的时候对二次函数要加强练习。
三:立体几何。
立体几何中最重要的就是线、面的关系。有线面的平行、垂直关系,面面的平行、垂直关系。通常在高考中考察的立体几何就是要证明线面的位置关系以及面面的位置关系。我们在解决此类的题目的时候要数练掌握定理和性质,对于定理我们比较熟悉,而对于性质的运用不是很好,所以我们要加强性质的运用。在解决较复杂的立体几何题目中你多画辅助线,也许辅助线会给你许多的益处,为你的解题提供方便之门。
四:解析几何。
解析几何在高考中的难度比较大,所以只要掌握常规方法就足够了。
1、直线与圆的位置关系,圆与圆的位置关系。这里运用的最多的就是点到直线的距离来判断他们的位置关系。
2、椭圆、双曲线、抛物线。椭圆在高考中出现的频率还是比较高的,形式以直线与椭圆
的位置为主,所以对于常规的圆锥曲线的题目你要掌握常规的解法,比如点差法和代入法啊,这些常规的方法一定要掌握。双曲线和抛物线在前面的客观题还是考的比较多。主要还是离心率考察的比较多,这就要从已知条件出发,将所给的条件划到关于ac上最常见的就是将离心率平方,找到ac的关系。
五:数列。
等差数列的通项公式、求和公式,等比数列的.通项公式、求和公式要熟练运用。数列类的题目大部分要你先求通项,然后再求和。
1、你要对求通项和求和的进行分类,找到其中的方法,比如求通项的时候你就要想到利
用和式进行做差,这样就能够解决。当题目给的是递推公式的时候,那么你就要进行构造新的数列,这个新数列不是等比就是等差。在有的题目已经给出了新的构造的数列据比较简单了,只要凑下就好了。
2、在求和的时候你就要会公式发,错位相减法,倒序相加,列项相消法,分组求和等方法。
不过你要分清他们的使用范围,比如错位相减法就是解决等差数列和等比数列的组合的复杂的数列。因为求和的方法不过只有这么多,实在不行的话就一个个的试。
六:向量。
向量在高考中的分量不是很重,所以你只要掌握向量的基本运算。向量的基本运算方法分为几何法和坐标法,几何法就是利用三角形定理和平行四边形定理,这些在选择填空题中常见,另外,充分的运用三点共线原理进行解决问题很重要。坐标法运用的比较多,对于向量的坐标法的基本运算你也要好好的掌握,在几何法解决有点苦难的时候你就要想到坐标法,建系,设点坐标。
【歌颂党的作文800字】相关文章:
歌颂党的作文800字07-04
歌颂友情名言02-24
国庆节歌颂作文(通用8篇)09-30
中国共产党党员组织关系介绍信01-08
2022年国庆歌颂祖国朋友圈简短文案(精选155句)09-21
歌颂教师演讲稿04-24
歌颂老师的演讲稿05-05
教师节歌颂老师演讲稿05-18